
KIT – The Research University in the Helmholtz Association www.kit.edu

Robotics I: Introduction to Robotics
Chapter 7 – Motion Planning

Tamim Asfour http://www.humanoids.kit.edu

0

1

2

x

y

z

Robotics I: Introduction to Robotics | Chapter 072

Motivation

Scene
Representation

Grasping Task
Motion

Planning
Sensor-based

Execution

Kinematics
Continuous Path Control
Control
…

This chapter

Robotics I: Introduction to Robotics | Chapter 073

Table of Contents

Motivation

Fundamentals of motion planning

Path planning for mobile robots

Motion planning for manipulators

Robotics I: Introduction to Robotics | Chapter 074

Motion Planning: Motivation (1)

Generation of a collision-free trajectory w.r.t. various goals and constraints

Robotics I: Introduction to Robotics | Chapter 075

Motion Planning: Motivation (1)

Generation of a collision-free trajectory w.r.t. various goals and constraints

Robotics I: Introduction to Robotics | Chapter 076

Table of Contents

Motivation

Fundamentals of motion planning

Problem statement

Definitions

Concept formation

Problem categories

Path planning for mobile robots

Motion planning for manipulators

Robotics I: Introduction to Robotics | Chapter 077

Motion Planning: Problem Statement

Given:
Configutration space 𝐶

Start configuration 𝒒𝑠𝑡𝑎𝑟𝑡 ∈ 𝐶

Goal configuration 𝒒𝑔𝑜𝑎𝑙 ∈ 𝐶

Required
Continuous trajectory

𝜏: 0,1 → 𝐶 with 𝜏 0 = 𝒒𝑠𝑡𝑎𝑟𝑡 and 𝜏 1 = 𝒒𝑔𝑜𝑎𝑙

With respect to

Contraints (joint limits, maximal acceleration, …)

Quality criteria (duration, energy, distance to obstacles, smoothness of the trajectory, …)

Additional and boundary contraints (Upright position of end-effector, …)

Robotics I: Introduction to Robotics | Chapter 078

Workspace

𝑊: cartesian space ℝ6

Tool Center Point (TCP)

Obstacle

0

1

2

x

y

z

Trajectory in Workspace

TCP

Robotics I: Introduction to Robotics | Chapter 079

Configuration Space (C-Space)

𝐶: n-dimensional configuration space (C-Space)

𝐶𝑓𝑟𝑒𝑒: all collision-free configurations

𝐶𝑜𝑏𝑠: all configurations resulting in collisions

𝐶 = 𝐶𝑓𝑟𝑒𝑒⋃ 𝐶𝑜𝑏𝑠
Trajectory in C-Space

𝐶𝑜𝑏𝑠

𝜃0𝜃1

𝜃2

𝜃0𝜃1

𝜃2

Robotics I: Introduction to Robotics | Chapter 0710

Memory Consideration (1)

Is it possible to store configuration and obstacle space?

Assumptions:
Resolution of rotation joints: 1°

Resolution of translatory joints : 1 cm

Storage space per configuration: 1 bit (0: no obstacle, 1: obstacle)

Example: 7-DoF robot arm (7 rotation joints)

3607 bit ≈ 7,8 ⋅ 1017 bit ≈ 87 Petabyte = 87 × 1015Byte

Robotics I: Introduction to Robotics | Chapter 0711

Is it possible to only store the obstacle space?

Assumptions:
Only 0,1 % of the configuration space are in collision

We have to store each configuration

Robot with 𝑁 DoF: Store 𝑁 32-bit floating point numbers per configuration (4 Byte)

Example: 7-DoF robot arm (7 rotation joints)

0,1

100
⋅ 3607 ⋅ 7 ⋅ 4 Byte ≈ 2,2 ⋅ 1016 Byte = 19,5 Petabyte

Memory Consideration (2)

Robotics I: Introduction to Robotics | Chapter 0712

Workspace vs. Configuration Space

Example: 3 DoF robot arm

Robotics I: Introduction to Robotics | Chapter 0713

Configuration and Obstacle Space

𝐶𝑓𝑟𝑒𝑒 and 𝐶𝑜𝑏𝑠 can change during execution

Goal: grasp the green object

Robotics I: Introduction to Robotics | Chapter 0714

Configuration and Obstacle Space

How do changes in the workspace affect the C-Space?

Robotics I: Introduction to Robotics | Chapter 0715

Configuration and Obstacle Space

How do changes in the workspace affect C-Space?

Robotics I: Introduction to Robotics | Chapter 0716

Motion Planning: Definitions (1)

Configuration

A configuration 𝒒 ∈ 𝐶 describes the robot state as a joint angles vector in
joint space.

Configuration Space

The configuration space 𝐶 of a robot 𝑅 is the space of all possible joint angle
configurations of 𝑅.

Motions can also be planned in workspace (mobile robots & drones). In this
case, the configuration is the position and orientation of the robot

Robotics I: Introduction to Robotics | Chapter 0717

Obstacle in workspace

An obstacle in workspace 𝑂 is the space occupied by an
object in workspace.

Obstacle in C-Space

An obstacle in configuration space 𝐶𝑂 is the set of points
in configuration space 𝐶 that lead to a collision with the
obstacle 𝑂

Obstacle space

The obstacle space 𝐶𝑜𝑏𝑠 is the set of all
obstacles in configuration space

Motion Planning: Definitions (2)

𝐶𝑜𝑏𝑠 =ራ

𝑖

𝐶𝐻𝑖

𝜃0𝜃1

𝜃2

Robotics I: Introduction to Robotics | Chapter 0718

Motion Planning: Definitions (3)

The free space is the set of all points in 𝐶 that do not lie in obstacle space 𝐶𝑜𝑏𝑠

𝐶𝑓𝑟𝑒𝑒 = 𝒒 ∈ 𝐶 | 𝒒 ∉ 𝐶𝑜𝑏𝑠 = 𝐶 ∖ 𝐶𝑜𝑏𝑠

Computation cost for calculation the free space 𝐶𝑓𝑟𝑒𝑒: 𝑂 𝑚𝑛

𝑛: Degrees of freedom of the robot
𝑚: Number of obstacles

𝐶𝑓𝑟𝑒𝑒 cannot be efficiently calculated for complex kinematics

Use of approximations for simplified representation of 𝐶𝑓𝑟𝑒𝑒

Robotics I: Introduction to Robotics | Chapter 0719

Approximation of Free Space (1)

Mixed

Free

Collision

𝑥

𝑦

𝜃1 = 45°

𝜃2 = 90°

𝜃1

𝜃2

45°

90°

𝐚 = (𝟒𝟓°, 𝟗𝟎°)

a

Robotics I: Introduction to Robotics | Chapter 0720

Approximation of Free Space (2)

𝑥

𝑦

𝜃1 = 67.5°

𝜃2 = 22.5°

𝑥

𝑦

𝜃1 = 45°

𝜃2 = 0°

Free

Collision

𝜃1

𝜃2

45°

70°

67.5°
0°

𝑥

𝑦

𝜃1 = 67.5°

𝜃2 = 70°

22.5°

approximately
free

approximately
in collision

𝐚

𝐛 = (𝟒𝟓°, 𝟎°) 𝐜 = (𝟔𝟕. 𝟓°, 𝟐𝟐. 𝟓°)

𝐝 = (𝟔𝟕. 𝟓°, 𝟕𝟎°)

𝐛

𝐝

𝐜

Robotics I: Introduction to Robotics | Chapter 0721

Motion Planning: Definitions (1)

Environment model

Exact: e.g. CSG (Constructed Solid Geometry)

Represent complex geometry by combining

basic primitives (cubes, cylinders, spheres, rings,

pyramids, ...) with logical operators.

Approximated: describe the environment

through approximation (boxes, genaralized

cylinders, polyhedrons,)

wiki

Robotics I: Introduction to Robotics | Chapter 0722

Motion Planning: Definitions (2)

Path planning
Rigid object (e.g. mobile robot, autonomous vehicle)
2d problem (position: 𝑥, 𝑦)
3d problem (position: 𝑥, 𝑦; rotation: 𝛼) → Piano Mover‘s Problem

Motion planning
Multi-body systems (e.g. robot arms, multi-robot systems)
High-dimensional problem

Constraints
Global contraints: Limit the vaild configuration space, e.g. upright end-effector positions,
minimal motor currents, etc.
Local constraints: Restrict transitions between configurations, e.g.

Non-holonomic vehicles cannot move sideways or turn on the spot
Staying within max. velocities or accelerations

Robotics I: Introduction to Robotics | Chapter 0723

Motion Planning: Definitions (3)

Complexity
In general motion planning is a PSPACE-complete problem

Deterministic Turing maschines can solve it only with polynomial (memory) space

Lower and upper bounds of complexityt NP ⊆ PSCAPE ⊆ EXPTIME, i.e. NP-hard
problem

Robotics I: Introduction to Robotics | Chapter 0724

Motion Planning: Definitions (4)

Complete algorithm
A complete algorithm finds at least one solution for a problem or determines
in finite time that no solution exists.

Randomized algorithm
A randomized algorithms usee randomized values, to speed up processing
they often make use of heuristics.

Resolution complete algorithm
If a randomized algorithm is complete for a discrete problem, it is called
resolution complete.

Robotics I: Introduction to Robotics | Chapter 0725

Motion Planning: Definitions (5)

Probabilistically complete algorithm
A probabilistically complete algorithm finds at least one solution if it exists.
The probability of finding a solution converges to one over time.

However, a probabilistically complete algorithm cannot determine whether
no solution exists

Robotics I: Introduction to Robotics | Chapter 0726

Motion Planning: Problem Classes (1)

Class a

Known: complete world model

complete set of constraints

Required: collision-free trajectory from start to goal state

Class b

Known: incomplete world model
incomplete set of constraints

Required: collision-free trajectory from start to goal state

Problem: collision with unknown objects

Robotics I: Introduction to Robotics | Chapter 0727

Motion Planning: Problem Classes (2)

Class c
Known: time-variant world model (moving obstacles)
Required: collision-free trajectory from start to goal state
Problem: changing obstacles in time and space

Class d
Known: time-variant world model
Required: trajectory to moving goal (rendezvous problem)
Problem: changing goal state in time and space

Class e
Known: no world model
Required: collision-free trajectory from start to goal state
Problem: Mapping (creation of world model)

Robotics I: Introduction to Robotics | Chapter 0728

Table of Contents

Motivation

Fundamentals of motion planning

Path planning for mobile robots

Graph-based

Potential fields

Motion planning for manipulators

Robotics I: Introduction to Robotics | Chapter 0729

Path Planning for Mobile Robots

Given:
2D world model (e.g. road map)
Start and goal position 𝒒𝑠𝑡𝑎𝑟𝑡 and 𝒒𝑧𝑖𝑒𝑙

Required:
(optimal) path from 𝒒𝑠𝑡𝑎𝑟𝑡 to 𝒒𝑧𝑖𝑒𝑙

Approach:
Construct a path net (graph) 𝑊 in 𝐶𝑓𝑟𝑒𝑒
Map 𝒒𝑠𝑡𝑎𝑟𝑡 and 𝒒𝑧𝑖𝑒𝑙 to the nearest vertices 𝒒′𝑠𝑡𝑎𝑟𝑡 and 𝒒′𝑧𝑖𝑒𝑙 in 𝑊
(nearest neighbour)
Search for a path from 𝒒′𝑠𝑡𝑎𝑟𝑡 to 𝒒′𝑧𝑖𝑒𝑙 in 𝑊
Search for a path between 𝒒𝑠𝑡𝑎𝑟𝑡 and 𝒒′𝑠𝑡𝑎𝑟𝑡, and between 𝒒′𝑧𝑖𝑒𝑙 and 𝒒𝑧𝑖𝑒𝑙

Robotics I: Introduction to Robotics | Chapter 0730

Approach – Visualization

𝑞𝑠𝑡𝑎𝑟𝑡

𝑞𝑔𝑜𝑎𝑙
𝑞´𝑔𝑜𝑎𝑙

𝑞´𝑠𝑡𝑎𝑟𝑡

Robotics I: Introduction to Robotics | Chapter 0731

Path Planning for Mobile Robots

Two Steps

1. Generation of the graph 𝑾

2. Search in 𝑾

Robotics I: Introduction to Robotics | Chapter 0732

Path Planning for Mobile Robots

1. Generation of the graph 𝑾
Retraction methods, e.g. Voronoi Diagrams

Visibility Graph

Cell Decomposition

2. Search in 𝑊
Tree search

A*

Robotics I: Introduction to Robotics | Chapter 0733

Voronoi Diagram

Voronoi Diagram: Partition of a space in regions based on given points or areas that
describe obstacles.

A region of the Voronoi diagramm is defined as the set of points, whose distance to an
obstacle is less than to all other obstacles.

All points on the boundary between two regions of have the same distance to their
own and to their neighbouring obstacles.

Robotics I: Introduction to Robotics | Chapter 0734

Voronoi Diagrams: Construction (1)

Given set of points P (obstacles)

P

Robotics I: Introduction to Robotics | Chapter 0735

Voronoi Diagrams: Construction (2)

Divid P into two approximately equal subsets P1 and P2

P1 P2

Robotics I: Introduction to Robotics | Chapter 0736

Voronoi Diagrams: Construction (3)

By recursively subdividing the set of points, the creation of the Voronoi
diagramm can be reduced to two cases.

Case 1: 2 points Case 2: 3 points

the perpendicular bisector of all paired points
are cut off at the common intersection point

the perpendicular bisector
forms the Voronoi diagram

Robotics I: Introduction to Robotics | Chapter 0737

Voronoi Diagrams: Construction (4)

Construct Voronoi diagrams for P1 and P2

P1 P2

Robotics I: Introduction to Robotics | Chapter 0738

Voronoi Diagrams: Construction (5)

Merge the Voronoi diagrams of P1 and P2
Connect the nearest neighbour along the dividing line

P1 P2

Robotics I: Introduction to Robotics | Chapter 0739

Voronoi Diagrams: Construction (6)

Merge the Voronoi diagrams of P1 and P2
Draw and cut off new perpendicular bisector

P1 P2

Robotics I: Introduction to Robotics | Chapter 0740

Voronoi Diagrams: Construction (7)

Voronoi diagram for P

Robotics I: Introduction to Robotics | Chapter 0741

Voronoi Diagrams: Advantages and Disadvantages

Voronoi diagram consist of straight and
parabolic segments

Advantages:

Maximal distance to obstacles

Disadvantages:

Path found is usually not the
shortest

Only few paths are generated if
there are few obstacles

𝒒𝑧𝑖𝑒𝑙

𝒒′𝑧𝑖𝑒𝑙
𝒒𝑠𝑡𝑎𝑟𝑡

𝒒′𝑠𝑡𝑎𝑟𝑡

𝐶𝑓𝑟𝑒𝑒

𝐶𝑜𝑏𝑠

𝐶𝑜𝑏𝑠

Now: obstacles are represented by polygons

Jean-Claude Latombe, Robot Motion Planning, Springer, 1991, page 173

Robotics I: Introduction to Robotics | Chapter 0742

Connect each pair of Vertices on the Edge of 𝒞free with a straight line
segment if it does not intersect an obstacle

Connect 𝒒𝑠𝑡𝑎𝑟𝑡 and 𝒒𝑔𝑜𝑎𝑙 as well

Visibility Graph

𝒒𝑧𝑖𝑒𝑙

𝒒𝑠𝑡𝑎𝑟𝑡

𝑂1

𝑂2

𝑂3

Jean-Claude Latombe, Robot Motion Planning, Springer, 1991, page 156

Robotics I: Introduction to Robotics | Chapter 0743

Visibility Graph: Advantages and Disadvantages

Advantages:

Finds optimal (shortest) path

for 2d problems and

if the robot and all obstacles can be represented by convex polygons

Disadvantages:

Paths are not necessarily collision-free, as obstacle edges can also be path
segments.

Solution: Expand the obstracles

Can also be used in ℝ𝟑, but the paths found are generally not the shortest
paths.

Robotics I: Introduction to Robotics | Chapter 0744

Visibility Graph : Expansion of Obstacles

Expand obstacles by the size of the robot → Grown Obstacles

Expansion depends of the shape of the robot

Rectangle shaped robotCircle shaped robot

𝑂1

𝑂2

𝑂3

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑧𝑖𝑒𝑙 𝑂1

𝑂2

𝑂3

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑧𝑖𝑒𝑙

Robotics I: Introduction to Robotics | Chapter 0745

Cell Decomposition

Approach:

1. decompose 𝐶𝑓𝑟𝑒𝑒 in cells, that makes it easy to find a path between two

configurations within the cell

2. Represent the spatial layout in adjacency graph

3. Search the optimal path from 𝒒𝑠𝑡𝑎𝑟𝑡 to 𝒒𝑔𝑜𝑎𝑙 in the graph

There are two kinds of cell decomposition:

Exact cell decomposition

Approximated cell decomposition

Robotics I: Introduction to Robotics | Chapter 0746

Exact Cell Decomposition

Decomposition of free space 𝐶𝑓𝑟𝑒𝑒 in cells c𝑖, with:

No overlap between cells

∀𝑖, 𝑘, 𝑖 ≠ 𝑘: 𝑐𝑖 ∩ 𝑐𝑘 = ∅

𝐶𝑓𝑟𝑒𝑒 as the union of all 𝑐𝑖

ራ

𝑖=1

𝑛

𝑐𝑖 = 𝐶𝑓𝑟𝑒𝑒

Robotics I: Introduction to Robotics | Chapter 0747

Exact Cell Decomposition with Line-Sweep

Exact Cell Decomposition

1

2

3

4

5

6

7

8
9 10

11 12

13

14

15

16

17
18

19

20

20

1

2

3

4

5
6

7

8

9

10

11

12

13

1415

16

17

18

19

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Chapter 0748

Approximated Cell Decomposition

Approach (e.g. Quadtree in 2D or Octree in 3D):
1. Decompose free space 𝐶𝑓𝑟𝑒𝑒 into cells of predefined shape (e.g. rectangles)

2. If cell is not entirely within 𝐶𝑓𝑟𝑒𝑒, reduce its size and decompose it further

3. repeat step 2 until the cell have a (predefined) minimal size

Advantage
Simple decompostion and therefore simple path search

Disadvantage
The free space can only be represented approximately

Robotics I: Introduction to Robotics | Chapter 0749

Approximated Cell Decomposition: Example

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

Obstacle space

Free space

Robotics I: Introduction to Robotics | Chapter 0750

Path Planning for Mobile Robots

1. Generation of the graph 𝑊
Retraction methods, e.g. Voronoi Diagrams

Visibility Graph

Cell Decomposition

2. Search in 𝑾
Tree search

A*

Robotics I: Introduction to Robotics | Chapter 0751

Tree search

Use case:
Mobile robot

2D workspace and configuration space

Representation of the configuration space as a Quadtree
Recursive decomposition of the space into cells

Cell are either free or contain an obstacle

Motion planning:
Find cells containing start and goal configuration

Connect adjacent free cells from start to goal

Collison free path planning through free cells

Robotics I: Introduction to Robotics | Chapter 0752

Tree search: Quadtree (1)

Represent configuration space as Quadtree

Obstacle space

Free space

Occupied node

Free node

Mixed node

layer

0

1

2

3

1
2 3
0

x

y

Robotics I: Introduction to Robotics | Chapter 0753

Tree search: Quadtree (2)

Layer

0

1

2

3

1
2 3
0

x

y

Occupied node

Free node

Mixed node

Obstacle space

Free space

Robotics I: Introduction to Robotics | Chapter 0754

Tree search: Quadtree (3)

Layer

0

1

2

3

1
2 3
0

x

y

Occupied node

Free node

Mixed node

Obstacle space

Free space

Robotics I: Introduction to Robotics | Chapter 0755

Baumsuche: Such einen Weg im Baum

0

1

2

3

1
2 3
0

x

y

Layer

Occupied node

Free node

Mixed node

Obstacle space

Free space

Robotics I: Introduction to Robotics | Chapter 0756

Tree search: Example (1)

Workspace

Reference point

robot

Configuration space

Configuration space of the robot (with expanded
obstacles)

Workspace of the robot with obstacles

𝑂1
𝑂2

𝑂3

𝑂1 𝑂2

𝑂3

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Chapter 0757

Tree search: Example (2)

Required: sequence of free cells from start
to goal state

Free cell

start

goal

Quadtree

Decomposition of the configuration
space into cells

𝑂1
𝑂2

𝑂3

Robotics I: Introduction to Robotics | Chapter 0758

Tree search: Example (3)

Evasion technique to avoid local obstaclesObstacle free path

𝑂1
𝑂2

𝑂3

𝑂1
𝑂2

𝑂3

Robotics I: Introduction to Robotics | Chapter 0759

Path Planning for Mobile Robots

1. Generation of the graph 𝑊
Retraction methods, e.g. Voronoi Diagrams

Visibility Graph

Cell Decomposition

2. Search in 𝑾
Tree search

A*

Robotics I: Introduction to Robotics | Chapter 0760

A*- Algorithm – Motivation

Shortest path from start to goal

Not traversable

Robotics I: Introduction to Robotics | Chapter 0761

?

A*- Algorithm – Motivation

Shortest path from start to goal

Robotics I: Introduction to Robotics | Chapter 0762

A*- Algorithm (1)

Shortest path from start to goal

A* is one of the most well-known path planning algorithms in weighted
graphs

a

b

c

d

e

f

g

h

i

5

1

2

5

4

2

3

1
2

11

4

2

Robotics I: Introduction to Robotics | Chapter 0763

A*- Algorithm (2)

Shortest path from start to goal

A* is one of the most well-known path planning algorithms in weighted
graphs

a

b

c

d

e

f

g

h

i

5

1

2

5

4

2

3

1
2

11

4

2

a

b

c

d

e

f

g

h

i

5

1

2

5

4

2

3

1
2

11

4

2

Robotics I: Introduction to Robotics | Chapter 0764

A*- Algorithm (3)

Shortest path from start to goal

A* is one of the most well-known path planning algorithms in weighted
graphs

→ discretizing of the space is needed

Robotics I: Introduction to Robotics | Chapter 0765

A*- Algorithm (4)

Shortest path from start to goal

Cost function 𝒇 𝒙 = 𝒈 𝒙 + 𝒉 𝒙
𝑔 𝑥 actual costs from start to node 𝑥

ℎ 𝑥 estimated costs from node 𝑥 to goal node

?

Robotics I: Introduction to Robotics | Chapter 0766

A*- Algorithm (5)

A* (“A Star”) is an algorithm for best-first search

Finds the optimal path from start node 𝑣𝑠𝑡𝑎𝑟𝑡 to a
goal node 𝑣𝑧𝑖𝑒𝑙

Optimal w.r.t. path costs
(e.g. shortest path, shortest time,
smallest edge weights, etc.)

Cost function 𝒇 𝒙 = 𝒈 𝒙 + 𝒉 𝒙
𝑔 𝑥 actual costs from start to node 𝑥

ℎ 𝑥 estimated costs from node 𝑥 to goal node

https://de.wikipedia.org/wiki/A*-Algorithmus

Robotics I: Introduction to Robotics | Chapter 0767

A*- Algorithm (6)

Iterative approach

Manage two node sets
Open Set 𝑂: nodes not visited yet
Closed Set 𝐶: already visited nodes

Update: for a visited node 𝑣𝑛:
Predecessor node 𝑝𝑟𝑒𝑑(𝑣𝑛)
accumulated cost, to reach 𝑣𝑛: 𝑔 𝑣𝑛
Heuristic of expected cost to reach goal: ℎ 𝑣𝑛

Initialize

𝑂 = 𝑣𝑠
𝐶 = {}

𝑔 𝑣𝑖 = ∞ 1 ≤ 𝑖 ≤ 𝐾 (or very big value for initial costs)

𝑔 𝑣𝑠 = 0

Robotics I: Introduction to Robotics | Chapter 0768

A*-Algorithm (7)

Algorithm
while 𝑂 ≠ ∅

Determine next node to expand
find 𝑣𝑖 ∈ 𝑂 with minimal 𝑓 𝑣𝑖 = 𝑔 𝑣𝑖 + ℎ(𝑣𝑖)

if 𝑣𝑖 = 𝑣𝑧𝑖𝑒𝑙
solution found: traverse predecessor of 𝑣𝑖 until 𝑣𝑠𝑡𝑎𝑟𝑡 is reached

𝑂. 𝑟𝑒𝑚𝑜𝑣𝑒 𝑣𝑖

𝐶. 𝑎𝑑𝑑 𝑣𝑖

Update all succesors 𝑣𝑗 of 𝑣𝑖
if 𝑣𝑗 ∈ 𝐶, skip 𝑣𝑗

if 𝑣𝑗 ∉ 𝑂, 𝑂. 𝑎𝑑𝑑(𝑣𝑗)

if 𝑔 𝑣𝑖 + 𝑐𝑜𝑠𝑡 𝑣𝑖 , 𝑣𝑗 < 𝑔 𝑣𝑗

𝑔(𝑣𝑗) = 𝑔(𝑣𝑖) + 𝑐𝑜𝑠𝑡(𝑣𝑖 , 𝑣𝑗)

ℎ 𝑣𝑗 = ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑣𝑗 , 𝑣𝑧𝑖𝑒𝑙

𝑝𝑟𝑒𝑑 𝑣𝑗 = 𝑣𝑖

Robotics I: Introduction to Robotics | Chapter 0769

A*-Algorithm: Example (1)

Grid with 15 nodes

Find optimal path from 𝑣2 to 𝑣13
Only horizontal and vertical movements allowed

Costs:
Entering a grey cell: 1

Entering a yellow cell: 4

Heuristic ℎ:
Euclidean distance to 𝑣13
(e.g. from 𝑣11to 𝑣13: ℎ(𝑣11) = 2)

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Chapter 0770

A*-Algorithm: Example (2)

Initialize:

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Chapter 0771

A*-Algorithm: Example, Initializing

Initialize:
𝑂 = 𝑣2

𝑓 𝑣2 = 0 + ℎ 𝑣2 = 42 + 12 ≈ 4.12

𝐶 = { }

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Chapter 0772

A*-Algorithm: Example, Step 1 (1)

State:
𝑂 = 𝑣2

𝑓 𝑣2 = 0 + ℎ 𝑣2 = 42 + 12 ≈ 4.12

𝐶 = { }

Update:

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Chapter 0773

A*-Algorithm: Example, Step 1 (2)

State:
𝑂 = 𝑣2

𝑓 𝑣2 = 0 + ℎ 𝑣2 = 42 + 12 ≈ 4.12

𝐶 = { }

Update:
Expand 𝑣2
𝑂 = 𝑣1, 𝑣3, 𝑣5

𝑓 𝑣1 = 1 + ℎ 𝑣1 = 1 + 4 = 5

𝑓 𝑣3 = 1 + ℎ 𝑣3 = 1 + 42 + 22 ≈ 5.47

𝑓 𝑣5 = 4 + ℎ 𝑣5 = 4 + 32 + 12 ≈ 7.16

𝐶 = {𝑣2}

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Chapter 0774

A*-Algorithm: Example, Step 2 (1)

State:
𝑂 = 𝑣1, 𝑣3, 𝑣5

𝑓 𝑣1 = 5

𝑓 𝑣3 ≈ 5.47

𝑓 𝑣5 ≈ 7.16

𝐶 = {𝑣2}

Update:

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Chapter 0775

A*-Algorithm: Example, Step 2 (2)

State:
𝑂 = 𝑣1, 𝑣3, 𝑣5

𝑓 𝑣1 = 5

𝑓 𝑣3 ≈ 5.47

𝑓 𝑣5 ≈ 7.16

𝐶 = {𝑣2}

Update:
Expand 𝑣1
𝑂 = 𝑣1, 𝑣3, 𝑣5, 𝑣4

𝑓 𝑣4 = 2 + ℎ 𝑣4 = 2 + 3 = 5

𝐶 = {𝑣2, 𝑣1}

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Chapter 0776

Task 4.1: A*-Algorithm, Step 3 (1)

State:
𝑂 = 𝑣3, 𝑣4, 𝑣5

𝑓 𝑣3 ≈ 5.47

𝑓 𝑣4 = 5

𝑓 𝑣5 ≈ 7.16

𝐶 = {𝑣1, 𝑣2}

Update:

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Chapter 0777

Task 4.1: A*-Algorithm, Step 3 (2)

State:
𝑂 = 𝑣3, 𝑣4, 𝑣5

𝑓 𝑣3 ≈ 5.47

𝑓 𝑣4 = 5

𝑓 𝑣5 ≈ 7.16

𝐶 = {𝑣1, 𝑣2}

Update:
Expand 𝑣4
𝑂 = 𝑣3, 𝑣5, 𝑣7

𝑔 𝑣4 + 𝑐𝑜𝑠𝑡 𝑣4, 𝑣5 = 2 + 4 = 6 ≥ 𝑔 𝑣5 = 4
⇒ No update

𝑓 𝑣7 = 6 + ℎ 𝑣7 = 6 + 2 = 8

𝐶 = {𝑣1, 𝑣2, 𝑣4}

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Chapter 0778

A*-Algorithm: Properties

Find optimal solution, if heuristic ℎ is suitable
heuristic ℎ is suitable, if it does not overestimate the costs to the goal

A* is optimal in efficiency for all (suitable) heuristics ℎ
No optimal algorithm that uses the same heuristic ℎ visits less nodes than A*

If ∀𝑥: ℎ 𝑥 = 0: Dijstra`s algorithm, resulting in 𝑓 = 𝑔
Greedy algorithm: does not use the distance to the goal

Visits more nodes than necessary

Robotics I: Introduction to Robotics | Chapter 0779

Calculating collision-free trajectories in configuration space

1. Step: Efficient representation of free space by a graph
Retraction approaches, e.g., Voronoi diagram

Visibility graph

Cell decomposition

2. Step: Search optimal path in graph
A*

RRT

…

Recap

Robotics I: Introduction to Robotics | Chapter 0780

Table of Contents

Motivation

Fundamentals of motion planning

Path planning for mobile robots

Graph-based

Potential fields

Motion planning for manipulators

Robotics I: Introduction to Robotics | Chapter 0781

Potential Field Method

Developed for motion planning by Oussama Khatib in 1986

O. Khatib, "Real-Time Obstacle Avoidance for Manipulators and Mobile Robots" , International Journal
on Robotics Research (IJRR), 5(1):90--98, Spring, 1986

Robotics I: Introduction to Robotics | Chapter 0782

The robot moves under the influence of forces exerted on it by a potential field

Definition:

A potential field 𝑈 is a scalar function defined over the free space

The force acting on the robot at a point 𝒒 of the potential field is the negative
gradient of the potential field at that point (configuration)

Potential Fields (1)

𝑈: 𝐶𝑓𝑟𝑒𝑒 → ℝ

𝐹 𝒒 = −𝛻𝑈(𝒒)

Robotics I: Introduction to Robotics | Chapter 0783

Obstacles create a repulsive potential

However, the robot shall not be influenced for large distances to obstacles
(> 𝜌0)

Example (FIRAS function):

𝜌 𝐪, 𝐪𝑜𝑏𝑠 = ‖𝒒 − 𝒒𝑜𝑏𝑠‖ is the shortest distance between robot and obstacle

𝐹𝑟𝑒𝑝 = −𝛻𝑈𝑟𝑒𝑝 = 𝜈
1

𝜌 𝒒, 𝒒𝑜𝑏𝑠
−

1

𝜌0
⋅

1

𝜌 𝒒, 𝒒𝑜𝑏𝑠
2 ⋅

𝒒 − 𝒒𝑜𝑏𝑠
𝜌(𝒒, 𝒒𝑜𝑏𝑠)

𝑈𝑟𝑒𝑝 𝒒 =

1

2
𝜈

1

𝜌 𝒒, 𝒒𝑜𝑏𝑠
−

1

𝜌0

2

𝑖𝑓 𝜌 𝒒, 𝒒𝑜𝑏𝑠 ≤ 𝜌0

0 𝑒𝑙𝑠𝑒

Potentialfeld: Repulsive Potenzial

𝜕 𝒙 2

𝜕𝑥𝑖
=

𝑥𝑖
𝒙 2

𝜕 𝒙 2

𝜕𝒙
=

𝒙

𝒙 2

Robotics I: Introduction to Robotics | Chapter 0784

Potential Field: Example for an Obstacle

Near the obstacle

𝑈𝑟𝑒𝑝 𝑥 =

1

𝑥 − 2
−

1

1.5

2

𝑖𝑓 𝑥 − 2 ≤ 1.5

0 𝑒𝑙𝑠𝑒

Else

Obstacle

Robotics I: Introduction to Robotics | Chapter 0785

Attractive potential

→ There shall be only a single minimum, located at 𝒒𝑧𝑖𝑒𝑙

Linear function of the distance to the goal:

𝐹𝒂𝒕𝒕𝒓 𝒒 = −𝛻𝑈𝑎𝑡𝑡𝑟 𝒒 = −𝑘 ⋅
𝒒 − 𝒒𝑔𝑜𝑎𝑙

‖𝒒 − 𝒒𝒈𝒐𝒂𝒍‖

The force is constant, however, a decreasing force is desirable close to the goal

Therefore, a quadratic function is used

Potential Fields (3)

𝑈𝑎𝑡𝑡𝑟 𝒒 = 𝑘 ⋅ ‖𝒒 − 𝒒𝑔𝑜𝑎𝑙‖

𝜕 𝒙 2

𝜕𝑥𝑖
=

𝑥𝑖
𝒙 2

𝜕 𝒙 2

𝜕𝒙
=

𝒙

𝒙 2

Robotics I: Introduction to Robotics | Chapter 0786

Quadratic function of the distance to the goal:

𝐹𝑎𝑡𝑡𝑟 𝒒 = −𝛻𝑈𝑎𝑡𝑡𝑟 𝒒 = −𝑘 ⋅ 𝒒 − 𝒒𝑔𝑜𝑎𝑙

Often, a combination of a linear and a quadratic function is used
Linear function, if far away from the goal

Quadratic function, if close to the goal

Potential Fields (4)

𝑈𝑎𝑡𝑡𝑟 𝒒 = 𝑘 ⋅
1

2
𝒒 − 𝒒𝑔𝑜𝑎𝑙

2

Robotics I: Introduction to Robotics | Chapter 0787

The target 𝒒𝑔𝑜𝑎𝑙 has the

attractive potential 𝑈𝑎𝑡𝑡𝑟

The obstacle space 𝐶𝑜𝑏𝑠 has the
repulsive potential 𝑈𝑟𝑒𝑝

Potential Fields: Example (1)

qgoal

qstart

qgoal

qstart

Robotics I: Introduction to Robotics | Chapter 0788

The sum of the acting forces determines the direction of motion

Resulting potential field: 𝑈(𝒒) = 𝑈𝑎𝑡𝑡𝑟(𝒒) + 𝑈𝑟𝑒𝑝(𝒒)

Resulting force field: 𝐹(𝒒) = 𝐹𝑎𝑡𝑡𝑟(𝒒) + 𝐹𝑟𝑒𝑝(𝒒)

Potential Fields: Example (2)

Robotics I: Introduction to Robotics | Chapter 0789

Potential Fields: Local Minima

Local minima:

Summing up 𝑈𝑎𝑡𝑡𝑟 and 𝑈𝑟𝑒𝑝 can lead to local minima of 𝑈.
A robot moving along the negative gradient of the potential field can get „stuck“ in
such local minimum.

Counter measures:

Define 𝑈𝑎𝑡𝑡𝑟 and 𝑈𝑟𝑒𝑝 so that 𝑈 does not have a local minimum except in 𝒒𝑔𝑜𝑎𝑙

In the search algorithm, apply techinques to „escape“ from local minima

Robotics I: Introduction to Robotics | Chapter 0790

Potential Fields: Parameters

Choose suitable values for parameters 𝜈 (of the repulsive potential) and 𝑘 (of
the attractive potential); the ratio of these parameters is more important
than their absolute values

For manipulators:
Consider forces acting at the end-effector

Use Jacobi matrix to calculate the torques acting at the joints, which are induced
by the force at the end-effector

𝜏 = 𝐽𝑇 ⋅ 𝐹

Robotics I: Introduction to Robotics | Chapter 0791

Table of Contents

Motivation

Fundamentals of motion planning

Path planning for mobile robots

Motion planning for manipulators
Probabilistic Roadmaps (PRM)

Dynamic Roadmaps (DRM)

Rapidly-exploring Random Trees (RRT)

Extensions of RRT
Constrained RRT

RRT*

Narrow passages

Dynamic Domain RRT

Bridge Sampling

Robotics I: Introduction to Robotics | Chapter 0792

Fundamentals of motion planning: Terms

Path planning
Rigid object (e.g. mobile robot, autonomous vehicle)
2D problem (position: 𝑥, 𝑦)
3D problem (position: 𝑥, 𝑦; rotation: 𝛼)
→ Piano Mover‘s Problem

Motion planning
Multi-body systems (e.g. robot arms, multi-robot systems)
High-dimensional problem

Constraints
Global contraints: Limit the allowed configuration space, e.g. upright
end-effector positions, minimal motor currents, etc.
Local constraints: Limit the transitions between configurations, e.g.
non-holonomic vehicles, max. velocities or accelerations

Robotics I: Introduction to Robotics | Chapter 0793

Table of Contents

Motivation

Fundamentals of motion planning

Path planning for mobile robots

Motion planning for manipulators
Probabilistic Roadmaps (PRM)

Dynamic Roadmaps (DRM)

Rapidly-exploring Random Trees (RRT)

Extensions of RRT
Constrained RRT

RRT*

Narrow passages

Dynamic Domain RRT

Bridge Sampling

Robotics I: Introduction to Robotics | Chapter 0794

Probabilistic Roadmaps (PRM) (1)

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; Overmars, M. H. (1996), "Probabilistic roadmaps for path planning in
high-dimensional configuration spaces", IEEE Transactions on Robotics and Automation, 12 (4): 566–580,
doi:10.1109/70.508439

Eric O. Scott
[CC BY-SA 4.0], via
Wikimedia Commons

Robotics I: Introduction to Robotics | Chapter 0795

Probabilistic Roadmaps (PRM) (2)

Multi-query in static environment

Approximation of the free space by graph (Roadmap)
More efficient than creating an explicit representation of the free space (𝐶𝑓𝑟𝑒𝑒)

PRM Algorithm

Step 1: Sample and create a graph
Create a collision-free graph by choosing random points (Sampling)

Step 2: Query
Connect 𝒒𝑠𝑡𝑎𝑟𝑡 und 𝒒𝑔𝑜𝑎𝑙 to the graph

Search a path from 𝒒𝑠𝑡𝑎𝑟𝑡 to 𝒒𝑔𝑜𝑎𝑙 on the graph

Robotics I: Introduction to Robotics | Chapter 0796

PRM: Sample and Create a Graph

Randomly choose collision-free probe points (Sampling)

Proble points are connected by collision-free paths using fast local planners

𝒞𝑜𝑏𝑠

𝒞𝑜𝑏𝑠

Robotics I: Introduction to Robotics | Chapter 0797

PRM: Query (1)

Connect 𝒒𝑠𝑡𝑎𝑟𝑡 and 𝒒𝑔𝑜𝑎𝑙 to the graph

Search in the graph
(e.g., using A*)

𝒞𝑜𝑏𝑠

𝒞𝑜𝑏𝑠

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Chapter 0798

PRM: Query (2)

Connect 𝒒𝑠𝑡𝑎𝑟𝑡 and 𝒒𝑔𝑜𝑎𝑙 to the graph

Search in the graph
(e.g., using A*)

𝒞𝑜𝑏𝑠

𝒞𝑜𝑏𝑠

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Chapter 0799

PRM: Construction of the Graph

𝑁: Number of nodes of the graph

𝑅: PRM, Graph

Algorithm:
Sample 𝑁 random configurations in 𝐶𝑓𝑟𝑒𝑒
Insert these configurations as nodes into 𝑅

For each node 𝑣𝑖 ∈ 𝑅
Find the 𝑘 next neighbors of 𝑣𝑖 in 𝑅: 𝒩(𝑣𝑖)

Für each node 𝑣 ∈ 𝒩 𝑣𝑖
If there is a (new) collision-free path from 𝑣 to 𝑣𝑖,
add the vertex (𝑣, 𝑣𝑖) to 𝑅

Result: 𝑅

Local planning

Robotics I: Introduction to Robotics | Chapter 07100

PRM: Characteristics

Very well suited for static environments

Construct the graph once

Multiple queries can efficiently be processed (multi-query)

Randomized approach to construct the graph (probabilistic)

Avoiding exponential growth of the runtime dependent on the dimension of the configuration space

Strongly depends on the sampling strategy. Sampling from a uniform distribution (uniform
sampling) may require many samples to correctly represent the connectivity of 𝐶𝑓𝑟𝑒𝑒

Problem: Narrow passages between obstacles

Solution: Increase sampling close to obstacles

Not complete, as the graph only approximates the free space 𝐶𝑓𝑟𝑒𝑒
Problem: Potentially, valid paths are not found

Solution: Extend the graph, so that it is connected, and andy point in 𝐶𝑓𝑟𝑒𝑒 can be reached directly from one node

Robotics I: Introduction to Robotics | Chapter 07101

PRM: Different Sampling Strategies

Random:
Configurations are randomly sampled and checked for collision

Grid:
Configurations are generated with discrete resolution

Resolution of cells determined hierarchically

Halton:
Halton sequence: Determine a set of points that cover an area better than a grid

Based on the mathematical concept of discrepancy

Call-based:
Sample within cells of decreasing size

Size is reduced in each iteration (e.g., to 1/8th)
Geraerts, Roland, and Mark H. Overmars. "A comparative
study of probabilistic roadmap planners." Algorithmic
Foundations of Robotics V. Springer Berlin Heidelberg,
2004. 43-57.

Robotics I: Introduction to Robotics | Chapter 07102

Content

Motivation

Fundamentals of motion planning

Path planning for mobile robots

Motion planning for manipulators
Probabilistic Roadmaps (PRM)

Dynamic Roadmaps (DRM)

Rapidly-exploring Random Trees (RRT)

Extensions of RRT
Constrained RRT

RRT*

Narrow passages

Dynamic Domain RRT

Bridge Sampling

Robotics I: Introduction to Robotics | Chapter 07103

Dynamic Roadmaps (DRM)

Multiple queries (multi-query) for given kinematic chain

1. Step: Preprocessing
Approximation of the configuration space by a roadmap (graph)

Approximation of the work space by voxels (cubes)

Mapping φWC: voxels → roadmap (nodes, edges)

2. Step: Query
Identify voxels with obstacle

Adjust the roadmap

Plan within the adjusted roadmap

Robotics I: Introduction to Robotics | Chapter 07104

DRM: Preprocessing

Sampling: create a collision-free roadmap by sampling random points
Many points needed to find solutions in different environments

Mapping φWC : check for collisions between all nodes/edges and all voxels of
the work space (high computational effort)

Leven, Peter, and Seth Hutchinson. "A framework for real-time path

planning in changing environments." The International Journal of

Robotics Research 21.12 (2002): 999-1030.

Robotics I: Introduction to Robotics | Chapter 07105

Identify all voxels with obstacle

Delete all related edges and nodes of the roadmap
Related edges and nodes are determined using φWC

Connect 𝒒𝑠𝑡𝑎𝑟𝑡 and 𝒒𝑔𝑜𝑎𝑙 to the graph

Search a path from 𝒒𝑠𝑡𝑎𝑟𝑡 to 𝒒𝑔𝑜𝑎𝑙 within the graph

DRM: Query

Leven, Peter, and Seth Hutchinson. "A framework for real-time path

planning in changing environments." The International Journal of

Robotics Research 21.12 (2002): 999-1030.

Robotics I: Introduction to Robotics | Chapter 07106

Distance Aware Dynamic Roadmap (DA-DRM)
DRM searches for the shortest path → Path often is close to objects (obstacles)

How can we take the distance to obstacles into consideration?
Define safety margin and delete all voxels within the safety margin

Calculate distances to obstacles for voxels that are close to obstacles

Assign a higher weight to edges of the roadmap which pass through such voxels

→ Shortest path within the roadmap but with higher distance to objects in the task space

Knobloch, A., Vahrenkamp, N., Wächter, M. and Asfour, T., Distance-Aware
Dynamically Weighted Roadmaps for Motion Planning in Unknown Environments,
IEEE Robotics and Automation Letters (RA-L), vol. 3, no. 3, pp. 2016-2023, July, 2018

Robotics I: Introduction to Robotics | Chapter 07107

Distance Aware Dynamic Roadmap (DA-DRM)

Graph 𝐺 = (𝑉, 𝐸)
Workspace to C-space mapping Φ𝑊𝐶: 𝑊 → 𝑉 ∪ 𝐸

Graph 𝐺 = (𝑉 , 𝐸) voxelized workspace 𝑊 mapping Φ

Robotics I: Introduction to Robotics | Chapter 07108

Distance Aware Dynamic Roadmap (DA-DRM)

Robotics I: Introduction to Robotics | Chapter 07109

Motion Planning with DRM

Instead of only binary (blocked/unblocked) information, store also the distance
to obstacles in the graph → weighted graph

Robotics I: Introduction to Robotics | Chapter 07110

Search a trajectory within the weighted graph

Motion Planning with DRM

Robotics I: Introduction to Robotics | Chapter 07111

Execution on ARMAR-IIIa

Robotics I: Introduction to Robotics | Chapter 07112

Comparison RRT, DRM, DA-DRM

Evaluation

Scene A Scene B Scene C

Robotics I: Introduction to Robotics | Chapter 07113

Evaluation

Safety distance: 70 mm

Robotics I: Introduction to Robotics | Chapter 07114

Content

Motivation

Fundamentals of motion planning

Path planning for mobile robots

Motion planning for manipulators
Probabilistic Roadmaps (PRM)

Dynamic Roadmaps (DRM)

Rapidly-exploring Random Trees (RRT)

Extensions of RRT
Constrained RRT

RRT*

Narrow passages

Dynamic Domain RRT

Bridge Sampling

Robotics I: Introduction to Robotics | Chapter 07115

Rapidly-exploring Random Trees (RRTs)

In contrast to PRMs

Algorithm for single query

No preprocessing needed

No problems with changing (dynamic) environments / kinematic chains

Probabilistically complete, randomized algorithm

No guarantee that a solution is found within a time limit

If a solution exists, it will be found (runtime to infinity)

Does not terminate if no solution exists

Efficient for high-dimensional problems

Extensions of standard RRT for specific problems, e.g., narrow
passages

http://lavalle.pl/rrt

James Kuffner & Stephen LaValle

http://lavalle.pl/rrt

Robotics I: Introduction to Robotics | Chapter 07116

RRT: Principle (1)

The shape of 𝐶𝑜𝑏𝑠 in the configuration
space is unknown

Initialization of the RRT
Create empty tree 𝑇

Insert 𝒒𝑠𝑡𝑎𝑟𝑡 into 𝑇

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

𝐶𝑜𝑏𝑠

Robotics I: Introduction to Robotics | Chapter 07117

RRT: Principle (2)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add nodes on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

𝐶𝑜𝑏𝑠

Robotics I: Introduction to Robotics | Chapter 07118

RRT: Principle (3)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝑞𝑠𝑡𝑎𝑟𝑡 = 𝑞𝑛𝑛
𝒒𝑠

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Chapter 07119

RRT: Principle (4)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝑞𝑠𝑡𝑎𝑟𝑡 = 𝑞𝑛𝑛
𝒒𝑠

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

𝑑

Robotics I: Introduction to Robotics | Chapter 07120

RRT: Principle (5)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

collision-free

𝑞𝑠𝑡𝑎𝑟𝑡

Robotics I: Introduction to Robotics | Chapter 07121

RRT: Principle (6)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝑞𝑠𝑡𝑎𝑟𝑡

𝒒𝑛𝑛

𝑑 𝒒𝑠

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

collision-free

Robotics I: Introduction to Robotics | Chapter 07122

RRT: Principle (7)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑛𝑛

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

𝒒𝑠

Robotics I: Introduction to Robotics | Chapter 07123

RRT: Principle (8)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑛𝑛

𝒒𝑠

collision!
𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Chapter 07124

RRT: Principle (9)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝒒𝑠𝑡𝑎𝑟𝑡

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Chapter 07125

RRT: Principle (10)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

Check in every step whether 𝒒𝑔𝑜𝑎𝑙 can be
connected to 𝑇 𝒒𝑠𝑡𝑎𝑟𝑡

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Chapter 07126

RRT: Principle (11)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

Check in every kth step whether 𝒒𝑔𝑜𝑎𝑙 can
be connected to 𝑇

Found a solution

𝒒𝑠𝑡𝑎𝑟𝑡

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Chapter 07127

RRT: Probabilistic Completeness (1)

RRTs are probabilistically complete

Intuition: 𝑇 spreads out evenly in the configuration space

by Javed Hossain
[CC BY-SA 3.0], via
Wikimedia Commons

Robotics I: Introduction to Robotics | Chapter 07128

The probability of a node in 𝑇 to be expanded is proportional to the size of its
Voronoi region. Larger Voronoi regions are favored for tree expansion.

RRT: Probabilistic Completeness (2)

RRT

Voronoi regions of the RRT
tree’s nodes

J. J. Kuffner and S. M. LaValle,
RRT-connect: An efficient
approach to single-query path
planning, Proceedings IEEE
International Conference on
Robotics and Automation.
2000, pp. 995-1001

Robotics I: Introduction to Robotics | Chapter 07129

𝐶𝑜𝑏𝑠 is not known; how to check whether 𝒒𝑠 can be
reached without collision?

RRT: Collision Detection (1)

collision!

𝒒𝑠

𝒒𝑛𝑛

Robotics I: Introduction to Robotics | Chapter 07130

𝐶𝑜𝑏𝑠 is not known; how to check whether 𝒒𝑠 can be
reached without collision?

Every tree node 𝒒 ∈ 𝐶 describes a robot configuration

Perform collision detection in task space

RRT: Collision Detection (2)

collision!

𝒒𝑠

𝒒𝑛𝑛

Robotics I: Introduction to Robotics | Chapter 07131

Also connecting path segments need to be collision free
Continuous Collision Detection (CCD): Exact, but slow

Sampling-based approach
Check nodes along path segments

Fast (incremental distance calculations!), but not exact

Results depend on sampling distance 𝑑′

RRT: Collision Detection (3)

}

𝑑′

𝐶𝑜𝑏𝑠
𝒒2𝒒1

}

𝑑′

𝐶𝑜𝑏𝑠 𝒒2𝒒1

Robotics I: Introduction to Robotics | Chapter 07132

Two trees:

𝑇1 starting from 𝒒𝑠𝑡𝑎𝑟𝑡

𝑇2 starting from 𝒒𝑔𝑜𝑎𝑙

Sampled points 𝒒𝑠 expand both trees:

𝒒𝑛𝑛,1 (nearest neighbor in 𝑇1)

𝒒𝑛𝑛,2 (nearest neighbor in 𝑇2)

A solution is found if both trees are
connected to 𝒒𝑠

Original version similar to RRT connect

Bi-Directional RRTs

J. J. Kuffner and S. M. LaValle, RRT-connect: An efficient approach to single-
query path planning, Proceedings IEEE International Conference on
Robotics and Automation. 2000, pp. 995-1001

𝒒𝑧𝑖𝑒𝑙
𝒒𝑛𝑛2

𝒒𝑛𝑛1

𝒒𝒔

𝑐𝑠𝑡𝑎𝑟𝑡

𝑇1

𝑇2

Robotics I: Introduction to Robotics | Chapter 07133

RRT: Post-Processing (Smoothing)

Solutions can be improved by post-processing

Randomly choose two nodes of the solution‘s path

If the connection between these nodes is collision-free, add an edge between
them and delete all nodes of the solution‘s path in between

Result: smooth trajectories

Path of smoothed solutionPath of original solution

Robotics I: Introduction to Robotics | Chapter 07134

Example with 3D configuation space

Found solution (blue) and
smoothed solution (green)

RRT: Example

Start RRT in configuration space
(red: 𝐶𝑜𝑏𝑠)

0q

1q

2q

0q

2q

1q

Robotics I: Introduction to Robotics | Chapter 07135

Content

Motivation

Fundamentals of motion planning

Path planning for mobile robots

Motion planning for manipulators
Probabilistic Roadmaps (PRM)

Dynamic Roadmaps (DRM)

Rapidly-exploring Random Trees (RRT)

Extensions of RRT
Constrained RRT

RRT*

Narrow passages

Dynamic Domain RRT

Bridge Sampling

Robotics I: Introduction to Robotics | Chapter 07136

Constrained RRT (1)

Motion planning must satisfy multiple constraints to generate valid
trajectories

Constant orientation of the end-effector

Balance of a bipedal robot

Constraints Space: 𝑪𝐂𝐒𝐓 ⊆ 𝑪

Constraints define lower-dimensional subsets (manifolds) in the
configuration space

Example: The set of all configurations 𝒒 that fulfill a constraint build a plane in the
three-dimensional configuration space

Sampling-based approaches can not, by design, fulfill these constraints

Robotics I: Introduction to Robotics | Chapter 07137

Constrained RRT (2)

Idea: Project a sample 𝒒𝑠 to the configuration 𝒒′𝑠, where q's satisfies all specified
constraints

Example: Let a constraint CST constitute a 2D manifold
in CCST ⊆ 𝐶

𝐶𝐶𝑆𝑇 = 𝒒 ∈ 𝐶: 𝒒 statisfies CST

Problem: How to perform the projection?

Randomized Gradient Descent

First Order Retraction
𝒒𝑛𝑛

𝒒𝑠

𝐶𝐶𝑆𝑇

𝒒′𝑠

Robotics I: Introduction to Robotics | Chapter 07138

Constrained RRT: Randomized Gradient Descent

Tolerance for constraint: 𝛼

Randomly determine 𝑛 neighbors of 𝒒𝑠
(in hyper sphere with radius 𝑑𝑚𝑎𝑥)

If a neighbor‘s distance to 𝐶𝐶𝑆𝑇 is smaller
than the distance of 𝒒𝑠 to 𝐶𝐶𝑆𝑇, replace 𝒒𝑠 by
this neighbor

Repeate until a maximum number of iterations
is reached, or the distance of 𝒒𝑠 to 𝐶𝐶𝑆𝑇 is
smaller than 𝛼

Distance to 𝐶𝐶𝑆𝑇 in task space is required

No directional information required

𝒒𝑠

𝒒′𝑠
𝒒𝑛𝑛

𝐶𝑁𝐵

Robotics I: Introduction to Robotics | Chapter 07139

Constrained RRT: First Order Retraction

Tolerance for constraint: 𝛼

Jacobian matrix 𝐽 provides directional information

Calculation as for the inverse kinematics

𝒒𝑠
′ = 𝒒𝑠 − 𝐽 𝒒𝑠

#Δ𝒙𝑠

Δ𝒙𝑠 is the distance of 𝒒𝑠
′ distance to 𝐶𝐶𝑆𝑇 in task

space

Distance measure to 𝐶𝐶𝑆𝑇 in task space
is required

M. Stilman, “Global manipulation planning in robot joint space with task constraints,”
IEEE Transactions on Robotics and Automation , vol. 26, no. 3, pp. 576–584, 2010.

𝒒𝑠

𝒒′𝑠
𝒒𝑛𝑛

𝐶𝐶𝑆𝑇

Robotics I: Introduction to Robotics | Chapter 07140

Content

Motivation

Fundamentals of motion planning

Path planning for mobile robots

Motion planning for manipulators
Probabilistic Roadmaps (PRM)

Dynamic Roadmaps (DRM)

Rapidly-exploring Random Trees (RRT)

Extensions of RRT
Constrained RRT

RRT*

Narrow passages

Dynamic Domain RRT

Bridge Sampling

Robotics I: Introduction to Robotics | Chapter 07141

RRT*

Problem: RRTs yield trajectories that are usually not optimal

RRT* optimizes the search space iteratively during the search

⇒ With sufficient time, the optimal path between 𝑞𝑠𝑡𝑎𝑟𝑡 and 𝑞𝑔𝑜𝑎𝑙 is found
⇒ asymptotic optimality

Optimization of the search tree in two steps:

Calculate costs of each new node (e.g., length of the path from the start node)

Rewiring of the search tree by adding new nodes

Disadvantage:

Longer runtime (up to a factor of 30 in comparison to uni-directional RRT)

Uni-directional algorithm

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning.
The International Journal of Robotics Research, 30(7):846–894, Jan. 2011.

Robotics I: Introduction to Robotics | Chapter 07142

RRT*: Algorithm

1. 𝒒𝑠 = 𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑛𝑑𝑜𝑚(𝐶) // Sample random configuration

2. 𝒒𝑛𝑛 = 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝒒𝑠, 𝑇) // Determine the nearest neighbor

3. 𝒒𝑛𝑒𝑤 = 𝑺𝒕𝒆𝒆𝒓(𝒒𝑛𝑛, 𝒒𝑠, 𝑑) // Go a step in the direction of 𝒒𝑠

4. 𝑖𝑓 ! 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒𝑃𝑎𝑡ℎ 𝒒𝑛𝑛 , 𝒒𝑛𝑒𝑤 : 𝑔𝑜𝑡𝑜 1 // Is the path collision-free?

5. 𝑄𝑛𝑒𝑎𝑟 = 𝑵𝒆𝒂𝒓(𝑇, 𝒒𝑛𝑒𝑤 , 𝑟) // All nodes within a maximum distance 𝑟 to 𝒒𝑛𝑒𝑤

6. 𝒒𝑚𝑖𝑛 = 𝑴𝒊𝒏𝑪𝒐𝒔𝒕𝑷𝒂𝒕𝒉(𝑄𝑛𝑒𝑎𝑟 , 𝒒𝑛𝑒𝑤) // 𝐶𝑜𝑠𝑡 𝒒𝑚𝑖𝑛 + 𝐶𝑜𝑠𝑡 𝒒𝑚𝑖𝑛 , 𝒒𝑛𝑒𝑤 minimal

7. 𝐴𝑑𝑑𝑃𝑎𝑡ℎ(𝑇, 𝒒𝑚𝑖𝑛, 𝒒𝑛𝑒𝑤) // Add path from 𝒒𝑚𝑖𝑛 to 𝒒𝑛𝑒𝑤

8. 𝑹𝒆𝒘𝒊𝒓𝒆(𝑇, 𝒒𝑛𝑒𝑤 , 𝑄𝑛𝑒𝑎𝑟) // Check edges to nodes in 𝑄𝑛𝑒𝑎𝑟

9. 𝑖𝑓 ! 𝑇𝑖𝑚𝑒𝑜𝑢𝑡: 𝑔𝑜𝑡𝑜 1 // Next iteration

Robotics I: Introduction to Robotics | Chapter 07143

RRT*: Functions (1)

𝒒𝑛𝑒𝑤 = 𝑆𝑡𝑒𝑒𝑟(𝒒𝑛𝑛, 𝒒𝑠, 𝑑)

▪ Go from 𝒒𝑛𝑛 towards 𝒒𝑠
with a step size 𝑑

▪ Check for collision

▪ Create node 𝒒𝑛𝑒𝑤

𝑄𝑛𝑒𝑎𝑟 = 𝑁𝑒𝑎𝑟(𝑇, 𝒒𝑛𝑒𝑤, 𝑟)

▪ Determine all nodes in 𝑇
within a maximum
distance 𝑟 to 𝒒𝑛𝑒𝑤

𝒒𝑛𝑛

𝒒𝑛𝑒𝑤

𝒒𝑠
𝑑

𝒒𝑛𝑒𝑤
𝑟

𝒒1
𝒒2

𝒒3

𝒒4
𝒒5

𝒒6

𝑄𝑛𝑒𝑎𝑟 = {𝑞4, 𝑞5, 𝑞6}

Robotics I: Introduction to Robotics | Chapter 07144

RRT*: Functions (2)

𝐶𝑜𝑠𝑡 𝒒𝑖 : Costs from 𝒒𝑠𝑡𝑎𝑟𝑡 to 𝒒𝑖

𝐶𝑜𝑠𝑡 𝒒𝑎 , 𝒒𝑏 : Costs from 𝒒𝑎 to 𝒒𝑏

𝒒𝑚𝑖𝑛 = 𝑀𝑖𝑛𝐶𝑜𝑠𝑡𝑃𝑎𝑡ℎ(𝑄𝑛𝑒𝑎𝑟 , 𝒒𝑛𝑒𝑤): Determine 𝒒𝑚𝑖𝑛 ∈ 𝑄𝑛𝑒𝑎𝑟
so that the costs 𝐶𝑜𝑠𝑡 𝒒𝑚𝑖𝑛 + 𝐶𝑜𝑠𝑡 𝒒𝑚𝑖𝑛, 𝒒𝑛𝑒𝑤 of the
path are minimal and the path is collision-free

𝐶𝑜𝑠𝑡 𝒒6
= 2 + 3 + 1 = 6

𝒒1
𝒒2

𝒒3

𝒒4
𝒒5

𝒒6

2

1

3

1

10

𝑞𝑚𝑖𝑛 = 𝑞6
𝒒𝑛𝑒𝑤

𝒒1
𝒒2

𝒒3

𝒒4
𝒒5

𝒒6

2

1

3

1
10

2

5

3

𝒒𝑛𝑒𝑤

𝒒1
𝒒2

𝒒3

𝒒4
𝒒5

𝒒6

2

1

3

1
10

2

𝒒𝑠𝑡𝑎𝑟𝑡 = 𝒒1

Robotics I: Introduction to Robotics | Chapter 07145

RRT*: Rewiring

𝑅𝑒𝑤𝑖𝑟𝑒(𝑇, 𝒒𝑛𝑒𝑤 , 𝑄𝑛𝑒𝑎𝑟): Check for all 𝒒𝑛𝑒𝑎𝑟 ∈ 𝑄𝑛𝑒𝑎𝑟 whether

𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤 + 𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤, 𝒒𝑛𝑒𝑎𝑟 < 𝐶𝑜𝑠𝑡(𝒒𝑛𝑒𝑎𝑟)

Update connection to nodes in 𝒒𝑛𝑒𝑎𝑟 (if cheaper and collision-free)

𝐶𝑜𝑠𝑡 𝑞4 = 12
𝐶𝑜𝑠𝑡 𝑞6 = 6
𝐶𝑜𝑠𝑡 𝑞𝑛𝑒𝑤 = 8
𝐶𝑜𝑠𝑡 𝑞𝑛𝑒𝑤 + 𝐶𝑜𝑠𝑡(𝑞𝑛𝑒𝑤, 𝑞5) = 13
𝑪𝒐𝒔𝒕 𝒒𝒏𝒆𝒘 + 𝑪𝒐𝒔𝒕(𝒒𝒏𝒆𝒘, 𝒒𝟒) = 𝟏𝟏

𝒒1

𝒒𝑛𝑒𝑤

𝒒1
𝒒2

𝒒3

𝒒4
𝒒5

𝒒6

2

1

3

1
10

2

5

3

𝒒𝑛𝑒𝑤

𝒒2
𝒒3

𝒒4
𝒒5

𝒒6

2

1

3

1

2
3

Robotics I: Introduction to Robotics | Chapter 07146

Comparison of RRT and RRT* (1)

S. Karaman and E. Frazzoli.
Sampling-based
algorithms for optimal
motion planning. The
International Journal of
Robotics Research,
30(7):846–894, Jan. 2011.

RRT

RRT*

1000Iteration 2500 5000 15000

Robotics I: Introduction to Robotics | Chapter 07147

Comparison of RRT and RRT* (2)

S. Karaman and E.
Frazzoli. Sampling-based
algorithms for optimal
motion planning. The
International Journal of
Robotics Research,
30(7):846–894, Jan. 2011.

RRT
RRT*

Path costs, averaged over
500 trials
(optimal solution: black)

Variance of the costs

Runtime ratio RRT* / RRT
(per iteration)

Robotics I: Introduction to Robotics | Chapter 07148

Content

Motivation

Fundamentals of motion planning

Path planning for mobile robots

Motion planning for manipulators
Probabilistic Roadmaps (PRM)

Dynamic Roadmaps (DRM)

Rapidly-exploring Random Trees (RRT)

Extensions of RRT
Constrained RRT

RRT*

Narrow passages

Dynamic Domain RRT

Bridge Sampling

Robotics I: Introduction to Robotics | Chapter 07149

Narrow Passages: Motivation

Classical RRTs determine new node 𝒒𝑠 by uniform sampling in the
configuration space 𝐶

Result of uniform sampling:

Many rather irrelevant samples
e.g., „in the middle of 𝐶𝑓𝑟𝑒𝑒“, far away from obstacles

Few interesting samples
e.g., close to obstacles, in particular in narrow passages between two obstacles

Classical RRTs can take much time to find a solution through a narrow passage

Main idea: Sampling is much cheapter than collision checks

Robotics I: Introduction to Robotics | Chapter 07150

Narrow passages in a 2D configuration space

Narrow Passages: Example (1)

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

𝐶𝑓𝑟𝑒𝑒 𝐶𝑜𝑏𝑠

𝐶𝑜𝑏𝑠

Robotics I: Introduction to Robotics | Chapter 07151

Narrow Passages: Example (2)

Narrow passages in a 2D configuration space

Low probability of a new sample to be in the area of the narrow passage

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

𝐶𝑓𝑟𝑒𝑒 𝐶𝑜𝑏𝑠

𝐶𝑜𝑏𝑠

Robotics I: Introduction to Robotics | Chapter 07152

Narrow Passages: Dynamic Domain RRT (1)

Problem: RRTs do not detect narrow passages und cannot sample purposefully

Ideal: Sample only in the visible Voronoi region of a node

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

𝐶𝑓𝑟𝑒𝑒 𝐶𝑜𝑏𝑠

𝐶𝑜𝑏𝑠 Voronoi region of 𝒒𝑠𝑡𝑎𝑟𝑡

Robotics I: Introduction to Robotics | Chapter 07153

Narrow Passages: Dynamic Domain RRT (2)

Problem: RRTs erkennen enge Passagen nicht und können nicht zielgerichtet sampeln

Ideal: Sample only in the visible Voronoi region of a node → collision check is not
needed

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑧𝑖𝑒𝑙

𝐶𝑓𝑟𝑒𝑒 𝐶𝑜𝑏𝑠

𝐶𝑜𝑏𝑠
Visible Voronoi region
of 𝒒𝑠𝑡𝑎𝑟𝑡

Robotics I: Introduction to Robotics | Chapter 07154

Narrow Passages: Dynamic Domain RRT (3)

But: Calculation of visible Voronoi regions is expensive
(no explicit representation of the obstacle regions in the configuration space)

Instead: Approximation of visible Voronoi regions by sphere with radius 𝑟
(Dynamic Domain)

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

𝐶𝑓𝑟𝑒𝑒 𝐶𝑜𝑏𝑠

𝐶𝑜𝑏𝑠

approximated visible
Voronoi region of 𝒒𝑠𝑡𝑎𝑟𝑡

(Dynamic Domain)

Robotics I: Introduction to Robotics | Chapter 07155

Dynamic Domain RRT (4)

In the vicinity of obstacles, Dynamic Domain RRT limits the sampling area of a node to
its Dynamic Domain (DD).

Initially, the DD radius 𝑟 of each node is set to ∞.
Sampling is performed in the whole Voronoi Region of the node.

During the RRT extension step, if no connection to a node can be determined, its DD radius is
reduced to a predefined value R. Such nodes are called boundary nodes, as they are located
at the boundary of 𝐶𝑓𝑟𝑒𝑒 and 𝐶𝑜𝑏𝑠.

Sampling: A sample 𝒒𝒔 is rejected, if 𝒒𝒔 is outside the DD radius of its nearest neighbor
(𝑑𝑖𝑠𝑡 𝒒𝒔, 𝒒𝒏𝒏 > 𝒒𝒏𝒏. 𝑟)

A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle. Dynamic-Domain RRTs: Efficient Exploration by Controlling the Sampling
Domain. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pages 3856–3861, Apr. 2005.

Robotics I: Introduction to Robotics | Chapter 07156

Dynamic Domain RRT (5)

In narrow passages, frequent collision checks are avoided, and no expansion
attempts are made to distant and unreachable nodes.

A. Yershova, L. Jaillet, T. Simeon,

and S. M. LaValle. Dynamic-Domain

RRTs: Efficient Exploration by

Controlling the Sampling Domain. In

Proceedings of the 2005 IEEE

International Conference on

Robotics and Automation, pages

3856–3861, Apr. 2005.

Robotics I: Introduction to Robotics | Chapter 07157

Dynamic Domain RRT – Comparison to RRT

A. Yershova, L. Jaillet, T.

Simeon, and S. M. LaValle.

Dynamic-Domain RRTs:

Efficient Exploration by

Controlling the Sampling

Domain. In Proceedings of the

2005 IEEE International

Conference on Robotics and

Automation, pages 3856–3861,

Apr. 2005.

Robotics I: Introduction to Robotics | Chapter 07158

Narrow Passages: Bridge Sampling (1)

Idea: Selectively choose points in narrow passages for the next sample

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

𝐶𝑓𝑟𝑒𝑒 𝐶𝑜𝑏𝑠

𝐶𝑜𝑏𝑠

Robotics I: Introduction to Robotics | Chapter 07159

Narrow Passages: Bridge Sampling (2)

Idea: Purposefully choose points in narrow passages for the next sample

Approach:
1. Uniformly sample a random point 𝒒1 ∈ 𝐶𝑜𝑏𝑠

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

𝐶𝑓𝑟𝑒𝑒 𝐶𝑜𝑏𝑠

𝐶𝑜𝑏𝑠

𝒒1

Robotics I: Introduction to Robotics | Chapter 07160

Narrow Passages: Bridge Sampling (3)

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑧𝑖𝑒𝑙

𝐶𝑓𝑟𝑒𝑒 𝐶𝑜𝑏𝑠

𝐶𝑜𝑏𝑠

𝒒1

𝒒2

Idea: Selectively choose points in narrow passages for the next sample

Approach:
1. Uniformly sample a random point 𝒒1 ∈ 𝐶𝑜𝑏𝑠
2. Choose a second point 𝒒2 ∈ 𝐶𝑜𝑏𝑠 in the vicinity

of 𝒒1, following a suitable probability distribution

Robotics I: Introduction to Robotics | Chapter 07161

Narrow Passages: Bridge Sampling (4)

Idea: Selectively choose points in narrow passages for the next sample

Approach:
1. Uniformly sample a random point 𝒒1 ∈ 𝐶𝑜𝑏𝑠
2. Choose a second point 𝒒2 ∈ 𝐶𝑜𝑏𝑠 in the vicinity

of 𝒒1, following a suitable probability distribution

3. If the midpoint 𝒒𝑠 between 𝒒1
and 𝒒2 is in 𝐶𝑓𝑟𝑒𝑒, use it as a new sample for the RRT
(or the PRM)

4. Repeat

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

𝐶𝑓𝑟𝑒𝑒 𝐶𝑜𝑏𝑠

𝐶𝑜𝑏𝑠

𝒒1

𝒒2

𝒒𝑠

Robotics I: Introduction to Robotics | Chapter 07162

Narrow Passages: Bridge Sampling (5)

Bridge Sampling increases the density of samples
in interesting areas of the configuration space 𝐶

Interesting are areas in the vicinity of obstacles,
especially in narrow passages

Bridge Sampling can be used for RRTs and PRMs

The core idea of the approach, the Bridge Test,
can be calculated efficiently also in high-
dimensional spaces

Samples generated by
bridge sampling

Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, and J. Reif, “Narrow passage sampling for probabilistic roadmap
planning,”IEEE Transactions on Robotics, vol. 21, no. 6, pp. 1105–1115, 2005

Robotics I: Introduction to Robotics | Chapter 07163

Software

Simox
Simox is lightweight platform independent C++ toolbox containing three libraries for
3D simulation of robot systems, sampling based motion planning and grasp planning

https://gitlab.com/Simox/simox

Developed at H2T, KIT

The Open Motion Planning Library (OMPL)
OMPL consists of many state-of-the-art sampling-based motion planning algorithms

https://ompl.kavrakilab.org/

Kavraki Lab, Department of Computer Science, Rice University

https://gitlab.com/Simox/simox
https://ompl.kavrakilab.org/

Robotics I: Introduction to Robotics | Chapter 07164

Robot Motion Planning
Jean-Claude Latombe

Principles of Robot Motion: Theory,
Algorithms, and Implementations
Howie Choset, Kevin M. Lynch, Seth
Hutchinson, George A. Kantor, Wolfram
Burgard, Lydia E. Kavraki and Sebastian Thrun

Literature

Robotics I: Introduction to Robotics | Chapter 07165

German Terms

English German

Cell decomposition Zellzerlegung

Constraint Zwangsbedingung, oder

Neben- und Randbedingung

Configuration Konfiguration

Configuration space Konfigurationsraum

Free space Freiraum

Motion planning Bewegungsplanung

Obstacle Hindernis

Path planning Pfadplanung

Potential field Potentialfeld

Trajectory Trajektorie

Visibility graph Sichtgraph

Robotics I: Introduction to Robotics | Chapter 07166

German Terms

Englisch Deutsch

Admissible Zulässig

Best-first search Bestensuche

Constraint Nebenbedingung

Kernel Kern

Narrow passages Enge Passagen

Predecessor Vorgängerknoten

Projection Projektion

Sampling Stichprobe

Robotics I: Introduction to Robotics | Chapter 07167

